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A THEORY FOR THE ELASTIC DEFIECTIONS OF PLATES
INTEGRALLY STIFFENED ON ONE SIDE

By Robert F. Crawford
SUMMARY

An elastic-deflection theory is presented for anisotropic plates
which exhibit coupling between bending and stretching. In particuler,
the theory provides a basis for analyzing plates integrally stiffened
on one side. The effect of coupling is responsible for the presence of
added terms in the potential-energy expression, the small- and large-
deflection equations of equilibrium, and the boundary conditions. Example
calculations show that in the case of a simply supported square plate
loaded in compression and having equal flexural stiffnesses in the prin-
cipal directions, coupling mey significantly lower the in-plane compres-
sive losd at which deflections grow rapidly.

INTRODUCTION

Plates integrally stiffened on one side are shown in references 1,
2, and 3 to be capable of carrying higher loads than conventional unstiff-
ened plates. Stiffening on one side entails, however, a characteristic
coupling between in-plane strains and lateral deflections of the plate
which may lower the compressive load that the plate elements of a struc-
ture could carry if coupling were not present. Also, if such plate ele-
ments form portions of a wing surface, the aerodynamic surface might be
adversely affected by the coupled deflections.

The presence of coupling in integrally stiffened plates, such as
those shown in figure 1, is recognized in references 4 and 5, but the
effect of coupling on the load-cerrying characteristics of a plate has
not been previously investigated. A system of equations epplicable to
integrally stiffened plates is given in the present paper. The potential-
energy expression, the differential equation of equilibrium, and the natural
boundary conditions are presented to provide two approaches to asnalysis.
An example is also included which illustrates the deflections of & simply
supported square plate acted upon by compressive loads which sre less
than the uncoupled critical load.
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Much of the material presented in the present paper was originally
included in a thesis submitted to the Virginias Polytechnic Institute in
partial fulfillment of the requirements for the master of science degree '
in Applied Mechanics in May 1955. o S T

SYMBOIS
e length of plate
b width of plate

C31s C125 Cpy1s Cpps Ckx  coupling constents defined in equations (1), in.

D flexursl stiffness of isotropic plate, in-1b
Dxy twisting stiffness relative to x- and y-directions,
in-1b
Dy, Do . flexural stiffnesses in x- and y-directions,
respectively, in-1b .
Eq, Ep - o extensional stiffnesses in x- and y-directions,
respectively, 1b/in. .
F force function defined by equation (9)
Gk shearing stiffness in xy-plane, 1b/in.
H overall thickness of plate plus integral stiff=—
eners, 1n.
k edge loeding perameter, - ﬁkbe/xeD
My, My resultant bending-moment intensities acting on

cross sections originselly perpendicular to
X- and y-axXes, respectlvely, 1b

Mky resultant twisting-moment intensity acting on
cross sections originally perpendiculer to
X~ and y-axes, 1b

Mys My, My boundary values of resultant bending and twisting
moments, 1b P
Nys Ny resultant normel-force intensities acting in

planes I and II of cross sections originally
perpendicular to x- and y-axes, respectively,
1b/in.
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Ny

Ryr By
n

A Q

u, v, W

lJ-lJ Ho

resultant shear-force intensity acting in plane IIT
of cross sections originally perpendicular to
x- and y-axes, 1b/in.

boundery values of resultent normal and shear
forces, 1b/in.

positive odd integers

resultant transverse shear-force intensities
acting on cross sections parallel to yz-plane
and xz-plane, respectively, 1lb/in.

boundary velues of resultant transverse shear-
force intensities acting in z-direction on
Plane originslly perpendicular to x- snd y-axes,
respectively, 1b/in.

lateral-loading intensity, psi

components of displacement in x-, y-, and
z-directions, respectively, in.

total potential energy of system, in-1b

components in x-direction for small-deflection
solution to differential equation of equilibrium

orthogonal coordinate system; z measured normsl
to plane of plate, and x and y measured
parellel to axes of principal stiffness

shear strain in plane III with respect to x- and
y-directions

normg]l strain in plane I in x-direction and in
plene IT in y-direction, respectively

Poisson's ratios associated with bending in
x- and y-directions, respectively, and defined
by equations (1)

Poisson's ratios assoclated with extensions in
X~ and y-directions, respectively, and defined
by equations (1)
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BASIC EQUATIONS

Coupling, as used herein, refers to the interaction between strains
in the plane of the plate and lateral deflections of the plate. The
stress distribution through the thickness of the skin and integral stiff-
ener on one side of a plate stiffened on one side will not be symmetric
because the construction is not symmetric. This lack of symmetry will
introduce bending and twisting moments which produce curvature when
direct stresses are applied in the plane of the plate.

A complete elastic-deflection theory for plates exhibiting coupling
can be composed of the following sets of equations:

1. Force-distortion equations

2. Strain-displacement equations

3. Differentisl equations of equilibrium

k., Displacement and stress-resultant boundary conditions

The force-distortion equations (equations relating stress resultants to
straine and curvatures) are given in reference 4 for integrally stiffened
plates. These equations are discussed subseguently to provide complete-
ness in the present paper. The equations which relate strains and cur-
vatures to displacements are given in reference 6 (p. 342) and are pre-
sented herein. The equilibrium equations in terms of the resultant
moments and In-plene forces are the same as those in ordinary plate theory
and are given in reference 6 (pp. 299-300). The boundary conditions will
be specified by the particular problem being considered.

For some applicetions, the potential-energy expression is used in
preference to solving the differential equation of equilibrium. The
potentiel-energy expression - is therefore derived in the appendix and
presented in the section entitled "Potential-Energy Expression.”

Force-Distortion Equations
References %4 and 5 include the effects of coupling in equations

relsting forces, moments, strains, and curvatures, and present methods -
for celculating the asscociated elestic constants and coupling terms for
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integrally stiffened plates. A general form of the force-distortion
equations given in reference k is

My = (gx%; + iy gag> + C11ly + Cyoly
My = (Siz" + by gig) + CpiNy + Cooly
>3
Myy = Dxy 3% oy + Cplixy
v  Nx ko g (1)
Gx = ? + C2l ? E-i' Ny
N
€y=0122%w+022-§%—E—3'NX+E%
2w | Nxy
A S A

The terms containing the C's are the added terms due to coupling and

the C's are the coupling constents. The quantities 02w/dx> and

d%w/3y® are the aversge curvatures and O%w/dx Jy is the average twist.
The planes In which the forces Ny, Ny, and ny act do not neces-~

sarily coincide with the midplane of the plate. These forces are applied
in erbitrerily located planes I, II, and III, respectively, and the
strains ey, €y and Txy are megsured in the corresponding planes.

Figure 2 illustrates the forces and moments acting on an element of an
equivalent, uniform thickness, enlsotroplc plate. The material proper-
ties of this ideslized element may be considered to vary unsymmetrically
about the midplane to permit coupling to exist even when the resultant
forces lie in the midplane. In reference 4 the locations of the planes

in which the forces act are left arbitr for the sake of generality.

The force-distortion equations (see eqsarzi)) apply only to cases in which
the axes of principal stiffness coincide with the directions of the
resultant forces.

Some of the coupling terms in the force-distortion equations msy be
eliminated by locating the planes in which the resultant forces act so
as to cause a moment, and thus a curvature, counter to that given by the
coupling effect. That is, plane I may be chosen so that either Cqp

or Coj is zero; plene II may be chosen so that either C22 or 012
is zero; plame III may be chosen so that Cxg 1s zero. In general,
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three of the coupling constants masy be eliminated. For the special case
of a flat homogeneous plate or a plate symmetrically stiffened on both
gides, all coupling is, of course, eliminated by locating planes I, II,
and IIT iIn the midplane of the plate.

The general form of the force-distortion equations as given in
equations (1) is used in the derivation of the potential-energy expression,
the equilibrium equetions, and the natural boundery conditions.

Strain~Displacement Equations

The strain-displecement equations applicable to this theory which
considers the effects of coupling are the same as those given in refer-
ence 6 (p. 342) for ordinery plates. They are

~

- ou , ifow)2
o = 8+ 3{%)
- ) 2 | (2)
¥ % ¥ %(%r) (
y ~Qu, OV, oW oW
Xy By Bx 3x ay |

Equilibrium Equations
The equilibrium equations for a plate which deforms according to
equations (1) will be the same as those for any plate theory when they
are expressed in terms of the resultant in-plane forces and moments.

Small-deflection equation of equilibrium.- The smali;deflection
equation of equilibrium is given in reference 6 (p. 300) as

%My %M, %M, 32 32 32
Ef-gﬁ+§ﬁx—-<+l\{ r+Ny62+2N 5;{—5;) (3)

which mey be written as

Ny 2 Ry, 32w )
S ay (q + Ny x S + Ny =— 32 + My 3% 57 (4)
where
o = X L gy (5)
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and
OM: OM:
= = Xy
¥y T (6)

In small-deflection analysis the forces in the plane of the plate’
are assumed to be unaffected by lateral deflections and will be known
functions. Therefore, the equations of equilibrium for the forces in the
plane of the plate (see ref. 6, p. 299) remain satisfied during deflec-
tion and are, accordingly, neglected.

By substitubing the expressions in equetions (1) for the moments
into equation (3), the effect of coupling on the equilibrium equation is
exhibited.

Large-deflection equations of equilibrium.- For a large-deflection
analysis where the in-plane forces may no longer be considered to be
independent of lateral deflections, all the equilibrium equations must
be considered simultaeneously with the strain-displacement and force-
distortion equations. Combining these three sets of equations in a menner
similar to that given in reference 6 (pp. 342-343) results in the fol-
lowing two equations:

1 3%, EUAT- 5 S - ahw o

B ot <GK E1>a %2 ELogh " (ona + Con + 23505 +
o 8’*w=<azw)2_32w82w

2l 3t \dx oy a2 2 (7)

h h, by
Dl§;E+2(p.yDl+Dw)-éiz;+y2+Dgg—E-Clgg—i%—

¥
o L, %%, % 3P _ TLBE
chl ¥ o2 ¥ 2CK) X2y ‘a1 Sy i+ Jy2 dx2  dx2 dy2
(8)
where
_°F
= a2
Y xR
2
NW“S%‘%J
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Equations (7) and (8), together with the boundery conditions, determine w
and F. The losding intensities may then be determined from equations (9).

Boundary Conditlons

The boundary conditions to be imposed along any edge of a plate will
fall into two classes: namely, conditions on displacements or conditions
on forces. These conditions will always occur in pairs such that either
e condition on a displacement or a condition on the associated force will
be prescribed, but never will both be prescribed.

For the case of a rectanguler plate with dimensions such as those
shown in figure 3, one of each of the following pairs of quantitles may
be prescribed along the indicated edges. (Note that these quantities
do not apply for elastically supported edgés.) ' i )

Displacement X Force
Along edges x =0 and x = a:
oM.
-
W or Qx —ﬂay (10)
Qu or My (11)
Along edges y =0 and y = b:
oM,
¢ o Gy (32)
%§ or My (13)

For cases in which the force 1s the prescribed component, coupling will
gffect the boundary conditions. This is illustrate8 in the section
entitled ."Illustrative Examples."

Potential-Energy Expression

The derivation of the general potential-energy expression for a plate
that deforms according to the force-distortlon relations given in equa-
tions (1) is presented in the appendix. The derivation of the expression
is applicable only to cases in which the reactions do no work. The results,.
therefore, may be used only for combinetions of free, simply supported,
or clamped-edge conditions. A more general expression may bhe obtained by
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considering the energy of elastic restraint distributed along the edges
of the plate. A method for including this generalization in the potential-
energy expression is presented in reference 7.

The expression for the total potential energy of a rectangular plate

with edges x =0 and & and y =0 and b is derived in the appendix
as

& b
- 2w\ % 4w 3%\ 2 3%y \2
V= % fo _/; [Dl(&:—’?) t Dby 32 32 Dz(g_ﬂ) * Py (W) *

e nfEf o - oo

ol

a b
2w 92w
j; j; Ea(cllnx + ClgNy)a—xg + 2 (Co1lx + C22Ny)a—y—é- +
Py 2y [® fb LY
By Mo N2 N2 Pl 3w = dw A
ER et St =T ANLS TN TP

a
k
The first integral and the last two integrals on the right-hand side of
equation (14) are those which would result from the small-deflection
analysis of an uncoupled anisotropic plate. The second integral of
equation (14%) contains the additional terms due to coupling, and the

third integral gives the energy of extensional straining in the planes
in which the forces Ny, Ny, and Nyy act. For small-deflection

anglysis, the variations of the third integral will vanish because the
forces Ny, Ny, and Nky will be prescribed. The second integral,

which represents the energy associated with coupling, will remain, how-
ever, in small-deflection analysis. For lerge-deflection analysis,
relationships must be derived between displacements and in-plane forces
so that the third integral may be evaluated.

b
= dw _ & oW =
My—a;-Mxy& Qywlodx (14)
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DISCUSSION OF APPLICATIONS

There will be some classes of problems for which coupling will have
no effect, whereas for others, the effect will be significant. Consider
the following cases:

1. The effects of coupling on the stability of plates acted upon by
forces in the plane of the plate

2. The effects of coupling on plates acted upon by lateral loads

3. The effects of coupling on the distribution of forces in the
plane of the plate

The effect of coupling is most apparent in problems which involve
stabllity considerations in the uncoupled case becsguse coupling can
lower the load which the plate can carry without excessive deflection.
Coupling causes lateral deflection as soon as the forces are applied in
the plane of the plate, in a menner quite similar to the deflection
caused by eccentric loading. When lateral deflection occurs upon appli-
cation of the in-plane forces, the problem may no longer be considered
as one of stability in the usual sense, but must be treated as a deflec-
tion problem. At some value of the applied forces, smasll-deflection
analysis will indicate a rapid growth of deflection for a small increase
in the epplied forces, and this level may be defined as the onset of
instability. The boundary conditions ere shown in the section entitled
"Tllustrative Examples" to be very important in that, under certain
conditiong, the effects of coupling are eliminated.

The effect of coupling on the deflection of a plate under lateral
load is less significant than for the previously discussed case. For
lateral loading, coupling only alters the already-present membrane
stresses which are usually neglected enyway. It is therefore likely
that the membrane forces masy be neglected in. the presence of coupling
also.

In the stability snalysis of conventional plates, the stress dis-
tribution due to the boundery forces is found by assuming that the plate
remsins flat during loading and that the redistribution of the forces
due to a small deflection 1s negligible, In the presence of coupling
there will be some sdditional redistribution of the forces during deflec~
tion. It is likely that the total redistribution may be neglected here
also because of two considerations. PFirst, small-deflection problems of
practical interest will not involve severe changes in the curvature of
the plate from one point to snother. (Changes in curvature cause changes

in the forces. See egs. (1).) Second, the proportions of the forseeable,

practical types of integrally stiffened plates will be such that the
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coupling constants will be smsll enough so as not to affect the stress dis-
tribution seriocusly. If cases arise which require consideration of the
redistribution of the stresses, the analysis will probably be more dif-
ficult than the conventional laerge-deflection analysis because of the
added complexity due to coupling.

For many of the practical problems in which coupling must be con-
sidered, the loading will be simple; that is, uniform compression, uniform
shearing, and in-plane bending. As discussed previously, the redistri-
bution of the forces will be negligible. A small-deflection analysis
mey be made by using the potentisl-energy expression, equation (1k4), or
by solving the differential equation of equilibrium, equation (5), sub-
ject to the appropriate boundary conditions. By substituting the moments
from equations (1) into equation (3), the equilibrium equation becomes
becomes

2 2
D Q&H 2 {1uvD _jﬁﬁi__ D Q&E -C .é_EZ - C é_EE
* da * <uy o I&”)ax2ay2 e >y H 32 12 ox= T

3Ny 32Ny 32Ny 32w 32w

= o=w
ZCKaxay-Cglaye nggy?—q_+Nx-é;2'+Ny—a-bz+2Nwm (15)

The terms due to coupling will drop out of the equilibrium equation for
many of the practical problems. The equilibrium equation will become
that for the conventional anisotropic plate; only the coupling terms
which mey occur in the boundery conditions (egs. (10) to (13)) will
remain to impose the effects of coupling on the problem.

TILUSTRATIVE EXAMPIES

For any case in which the coupling terms drop out of the equilibrium
equation and all the edges of the plate are clamped, there will be no
effect of coupling because the displacement boundary conditions will be
specified. (See egs. (10) to (13).) That is, none of the coupling terms
will sppear in the boundary conditions and there will, therefore, be no
effect of coupling.

In the case of a simply supported rectangular plate acted upon by
e uniformly distributed loed ﬁky there will be no effect of coupling.

That is, the displacements will be specified in equations (10) and (12)
which contain no effects of coupling and the forces will be specified in
equetions (11) and (13) which impose no effects of coupling because Ny

and Ny are zero. Thus, this uniform-shear case may be treated as though
coupling were not present.
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Consider now the case of a simply supported rectangular plate uni-
formly loaded in compression as shown in figure 3. The coupling terms
ere eliminated from the equilibrium equation, equation (15), as previously
discussed., Displacements will again be specified in equations (10) and
(12) which involve no coupling; forces will be specified in equations (11)
and (13) which will involve coupling. That 1s, equations (11) and (13)
become, after substitution from.equations_(;),

Py - Sl
3x2 x=0,8 Dy
and
2 ooyl
2
= 1y=0,b P2

In order to simplify this example, consider . Cpy = 0, Dy =Dy = “yDl +
ny = D, and a/b = 1. Mathematically, the problem is then reduced to
solving the equilibrium equation

dx2dy2  dy+ D 3x2

subject to the boundary conditions B

W =W =0
X=O,a —'O,-b
a_aw_ =0
SV
Y<ly=0,b
P - Sl
x> x=0,a D

This solution mey be found to be

W=y X, sin 2

n=1,3%,5,...

le
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where
2019k fsin nxby sinh &X a.x cos ZF byx + sinh nwa; cosh 5¥ e x sin §X bx
=m3:bn( = OO:E-ntbn+cosh nxay, -Binh%anx Sin%bnx
and
=&\h - K
an =gV - %
= JLw/
Pn = 2oV
Nyb®
k= - >
: =D

Figure 4 shows a plot of the deflections of the midpoint of a square
plate against velues of the load paremeter k. The value of the coup-
ling term chosen, Cy3 = 0.050H, is a feasible value, yet the calcula-

tions indicate significant deflections at loads well below Xk = 4.00,

which corresponds to the buckling value for the uncoupled plate. For
example, the plate of reference 8 which had longitudinsl ribbing 0.212 inch
high on 0.063-inch-thick skin had a calculated value of Cyy of about
0.002H. An equivalent-weight plate with 0.212-inch-high 45° ribbing (see
fig. 1(c)) on 0.063-inch-thick skin, however, would have s value of C11

of approximately -0.086H.

Tt mey be noted that the effect of the coupling term in this example
is analagous to moments of intensity - CllNk/D acting along the edges

Xx =0 and x =a of an uncoupled plate. The deflections produced by
these moments would form a mode which is similar to the uncoupled nstursl
buckling mode. This similerity may intensify the effects of coupling in
this particuler example. A reduced effect may be anticipated for larger
plate aspect ratios.

CONCLUDING REMARKS

The elastic-deflection theory presented herein forms a basis for the
analysis of anisotropic plates exhribiting coupling between bending and
stretching. In particuler, the theory provides a basis for analyzing
plates integrally stiffened on one side. 'The effects of coupling are
included in the potentisl-energy expression, the small- and lerge-
deflection equilibrium equations, and the boundary conditions.
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The most significant effect of coupling 1s that it can, depending
upon the boundary conditions, lower the load which the plate could carry
without excessive deflections if coupling were not present, " Coupling
causes bending upon spplication pf load, and s deflection analysis is
required for this type of problem rather than a stability analysis.

Example calculations show that coupling causes significant deflec-
tion of a compressed, simply supported square plate having equal flexural
stiffnesses in the two orthogonal directions at loads well below the

critical buckling load for the equivalent, uncoupled plate. The uncoupled

natural buckling mode is the same in this example as the mode of deflec-
tion caused by the coupling. In cases where this is not so, the results
may be quite different and, therefore, deserve further study.

Langley Aeronautical Isboratory, .
National Advisory Committee for Aeronsutics, -
Langley Field, Va., January 27, 1956.



NACA TN 3646 15
APPENDIX
DERIVATTION OF POTENTTAL-ENERGY EXPRESSION

The derivation of the potential-energy expression is applicable to
rectangular plates whose edges aré either free, simply supported, -or
clamped. The potential-energy expression is first derived for the gen-
eral case in order to include in the derivation the effects of coupling
which arise from strains in the plane of the plates. The terms which
are not included for small-deflection analysis are then indicated.

The potential-energy expression for the case of small deflections
may be obtained, in a mammer similar to that presented in reference 7, as

=4 D% a_w>2 aw)e
2 ./n \/ﬁ [ 3X2 My My dx Oy * NX( x * NY(By *

a

b
2ny ax ﬂ - 2q_W]d.X dy + \‘/; l MX %{[ - MSQ" Sh& = QXW ody +
8 b
- M O _ 3 .
A Mxy & QyW o (Al)

The potential energy may be made general by adding the energy of stretching
in the plane of the plate. This expression is given in reference 6
(p. 303) as

a b
/ f (Nxex + Nyey + waxy.)dx ay (42)
Jo Jo

By substituting the moments from equations (1) into equation (Al) and

the strains from equations (1) into expression (A2) and by adding the two
resulting expressions, the potentisl energy is obtained in the following
form which will probably be the most useful for analysis:

Y R e
Equ]clx a -1 fo j; [2(cuxx + clzny)% + 2(Cpmy + c.@@% + hcxx,q %]dx a -

LG e e SR B[ R g afe
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For small-deflection analysis, only the third term on the right-hand side
of equation (A3) may be omitted. The forces Ny, Ny, and Ny will be

prescribed in smsll-deflection analysis, and that term containing only
the forces will accordingly drop out when the variation of the potential
energy is taken.

The in-plene equilibrium equation (see ref. 6, p. 299) has heen used
in deriving equation (A3) from equation (Al).
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(a) Longitudinal or fransverse. (b) Longitudinal and transverse.

(c) Skewed (d) Skewed plus longitudinal and transverse .

Figure l.— Examples of integrally stiffened plates.
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e Plane I

—en—— Plane I
— e Plane Il

Figure 2.- Forces and moments acting on element of an equivalent, uniform
thickness, anisotropic plate.
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N

Figure 3.- Simply supported plate considered in analysis.

i
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Small-deflection theory

for uncoupled plate

E TEEE
Small- deflection theory [
for coupled plate —
o NoRe

x|=

Figure 4.- Variation with load of midpoint deflection of simply supported
square plate. Dy = Dp = Dy + Dyy = D; a/b = 15 C17 = 0.050H; Cpy = O.

NACA - Laugley Field, Va.



